First synthesis of α-aminophosphonates from natural porphyrin derivatives by the Kabachnik—Fields reaction

M. M. Kabachnic, a* E. V. Zobnina, V. Yu. Pavlov, I. O. Konstantinov, G. V. Ponomarev, and I. P. Beletskaya

^aDepartment of Chemistry, M. V. Lomonosov Moscow State University,
 1 Leninskie Gory, 119992 Moscow, Russian Federation.
 E-mail: mariamk@mail.ru
 ^bV. N. Orechovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences,
 10 ul. Pogodinskaya, 119121 Moscow, Russian Federation

A preparative procedure is proposed for the synthesis of α -aminophosphonates of natural porphyrins by the microwave-assisted Kabachnik—Fields reaction.

Key words: natural porphyrins, α -aminophosphonates, microwave-assisted reaction.

In recent years, hemoglobin derivatives have attracted considerable interest as the starting compounds for the design of new biologically active substances with a broad spectrum of action. Photofrin IITM and Vusidyne, TM which are used, respectively, as photosensitizers for photodynamic tumor therapy and in ophthalmology, 1-4 are the most prominent examples of successful clinical application of hemoglobin derivatives. Low efficiency of Photofrin IITM and the complicated synthesis of VusidyneTM are disadvantages of these drugs.⁴ That is why the design of new biologically active compounds based on natural porphyrins is of great importance. It is also well known that α -aminophosphonates and α -aminophosphonic acids, being structural analogs of α-aminocarboxylic acids, exhibit various biological activities. Many representatives of this class possess antibacterial activity⁵ and are used as cancerostatic, cytostatic, and other compounds of pharmacological importance.^{6,7}

Recently, we have studied the microwave-assisted reactions of dialkyl phosphites with aldimines and ketimines in the presence of catalytic amounts of cadmium iodide and demonstrated for the first time that the pharmacogenic α -aminophosphonate group can be introduced into natural porphyrins. It should be noted that microwave-assisted reactions of the corresponding azomethines with diethyl phosphite are successfully used to synthesize α -aminophosphonates of natural porphyrins by condensation of substitued benzaldehydes with pyrrole. However, it appeared that porphyrin-derived azomethines are unstable, which was adversely reflected in the yields of the final products.

As part of our continuing studies aimed at introducing the pharmacogenic α -aminophosphonate group into natural porphyrins, we examined the possibility of synthesizing α -aminophosphonates starting from natural porphy-

rins by the Kabachnik—Fields reaction, *i.e.*, by condensation of a carbonyl compound with a primary amine and a dialkyl phosphite.

Microwave-assisted condensation of natural porphyrins 1a-f (Scheme 1) with *tert*-butylamine and diethyl phosphite (1:1:3) in dichloroethane occurred quantitatively (^{31}P NMR spectroscopy). The necessity of using a threefold excess of diethyl phosphite is associated with the fact that it is partly evaporated in the course of the reaction performed in a microwave oven (the reactions were carried out in an open flat-bottom flask). If the reagents were used in the equimolar ratio, the yields of the final products decreased to 50-60%.

All phosphorus-substituted porphyrins were synthesized as crystalline compounds. Their structures were confirmed by ³¹P and ¹H NMR spectroscopy (Table 1) and mass spectrometry. After purification, compounds **2a**—**f** were obtained in 87—95% yields.

The ^{31}P NMR spectra of compounds **2a**—**f** have singlets at δ 19.5—25.8. It should be noted that the signal of porphyrins **2c**—**e** in which the phosphonate group is directly bound to the macrocycle is shifted upfield (δ 19.5—21.2).

The mass spectra of porphyrin derivatives 2a,b show the molecular ion peak $[MH]^+$ at m/z 816.1 and the daughter ion $[MH^+ - H_2O]$ at m/z 798.2 corresponding to the rearrangement of the chlorin macrocycle into the more stable porphyrin macrocycle through elimination of a water molecule. The mass spectra of aminophosphonates 2c,d and 2e show no peaks of molecular ions; the major ion peaks $[MH^+ - Bu^t]$ at m/z 731.0 and 777.4 result from elimination of the *tert*-butyl group of the aminophosphonate substituent. α -Aminophosphonate 2f undergoes deeper fragmentation. The mass spectrum of the latter contains a fragment ion at m/z 624.7 corresponding to

Scheme 1

R = H, Me

elimination of the Bu^t and $(EtO)_2P(O)$ groups from both α -aminophosphonate substituents.

To summarize, α -aminophosphonates of natural porphyrins can be prepared in high yields by the microwave-assisted Kabachnik—Fields reaction.

Experimental

The ^1H and ^{31}P NMR spectra (400 and 161.90 MHz, respectively) were recorded on a Varian VXR 400 instrument in C_6D_6 ; the chemical shifts were determined relative to the signals of the residual protons of the deuterated solvent for ^1H NMR and the signals of the external standard (85% H_3PO_4) for ^{31}P NMR. Electrospray-chemical ionization mass spectra were recorded on a Finnigan MAT-LCQ spectrometer (USA) using a chloroform—acetonitrile mixture as the carrier gas. The TLC analysis was carried out on Silufol plates using a 5:1 hexane—ethyl acetate system.

Commercial protohemin IX was used as the starting compound for the synthesis of α -aminophosphonates **2a,b**. It was successively transformed into aldehydes **1a,b**. Formylporphyrins **1c,d** were synthesized by periodate oxidation of diols of photoprotoporphyrins. Triformylchlorin e_6 trimethyl ester **1e** was prepared by oxidation of the vinyl groups of chlorin e_6 trimethyl ester with an OsO₄—NaIO₄ system. If 3,8-Diacetyl-13,17-bis(2-methoxycarbonylethyl)-2,7,12,18-tetramethylporphyrin **1f** was prepared by direct acetylation of the porphyrin ring. If

3-(2-tert-Butylamino-2-diethoxyphosphoryl)ethylidene-2-hydroxy-13,17-bis(2-methoxycarbonylethyl)-2,7,12,18-tetra-methyl-8-vinylporphyrin (2a). Diethyl phosphite (21 mg, 0.15 mmol) and tert-butylamine (30 mg, 0.05 mmol) were added to a solution of porphyrin 1a (30 mg, 0.048 mmol) in anhydrous dichloroethane (1.5 mL) in an open Erlenmeyer flask. The reaction was carried out in a domestic microwave oven (Daewoo, KOR-4125G, 102 W) for 2 min. The solvent and excess diethyl phosphite were evaporated in vacuo. The final reaction product was isolated by column chromatography on silica gel

Table 1. Parameters of the ³¹P and ¹H NMR spectra of compounds 2a-f

Com- pound	δ_{P}	$\delta_{ m H} \ (J/{ m Hz})$
2a	23.8	9.86, 9.67, 9.29, 9.22 (all s, 4 H, meso-H); 8.19 (dd, 1 H, 8-CH=CH ₂ , J_{trans} = 17.7, J_{cis} = 11.5); 7.06 (two d, 1 H, C(3)=CH, J_{cis} = 7.5, J_{trans} = 8.7); 6.35 (d, 1 H, $trans$ -8-CH=CH ₂ , J_{gem} = 1.4); 6.17—6.14 (d, 1 H, cis -8-CH=CH ₂); 5.32 (dd, 1 H, C(3)=CHCH, $J_{H,P}$ = 19); 4.30 (q, 4 H, P(O)(OCH ₂ CH ₃) ₂); 4.19, 4.08 (both t, 4 H each, 2 CH ₂ CH ₂ CO ₂ CH ₃); 3.66, 3.64 (both s, 6 H each, 2 CH ₂ CH ₂ CO ₂ CH ₃); 3.59, 3.48, 3.40 (all s, 9 H each, 3 CH ₃); 3.21—3.14 (two overlap. t, 4 H, 2 CH ₂ CH ₂ CO ₂ CH ₃); 2.35 (br.s, 1 H, NH); 2.14 (s, 3 H, 2 CH ₃); 1.46 (s, 9 H, C(CH ₃) ₃); 1.33 (t, 6 H, P(O)(OCH ₂ CH ₃) ₂); -2.41, -2.54 (both br.s, 2 H each, 2 NH)
2b	23.8	9.87, 9.69, 9.29, 9.23 (all s, 4 H each, $meso$ -H); 8.20 (dd, 1 H, 3-C \underline{H} =CH ₂ , J_{trans} = 17.7, J_{cis} = 11.5); 7.06 (two d, 1 H, C(8)=C \underline{H} , J_{cis} = 7.5, J_{trans} = 8.7); 6.35 (d, 1 H, $trans$ -3-CH=C \underline{H} ₂ , J_{gem} = 1.4); 6.17—6.14 (d, 1 H, cis -3-CH=C \underline{H} ₂); 5.32 (dd, 1 H, C(8)=CHC \underline{H} , $J_{H,P}$ = 19); 4.31 (q, 4 H, P(0)(OC \underline{H} ₂ CH ₃) ₂); 4.20, 4.09 (both t, 4 H each, 2 C \underline{H} ₂ CH ₂ CO ₂ CH ₃); 3.67, 3.65 (both s, 6 H each, 2 CH ₂ CH ₂ CO ₂ C \underline{H} ₃); 3.59, 3.49, 3.41 (all s, 9 H each, 3 CH ₃ rings); 3.22—3.15 (two overlap. t, 4 H, 2 CH ₂ C \underline{H} ₂ CO ₂ CH ₃); 2.41 (br.s, 1 H, N \underline{H}); 2.14 (s, 3 H, 2 C \underline{H} ₃); 1.46 (s, 9 H, C(C \underline{H} ₃) ₃); 1.34 (t, 6 H, P(0)(OCH ₂ C \underline{H} ₃) ₂); -2.38, -2.49 (both br.s, 2 H each, 2 NH)
2c	19.5	10.24, 9.99, 9.85, 9.84 (all s, 4 H, $meso-H$); 8.21 (dd, 1 H, 8-C \underline{H} =CH ₂ , J_{rrans} = 17.7, J_{cis} = 11.8); 6.35 (d, 1 H, $trans$ -8-CH=C \underline{H}_2 , J_{gem} = 0.5); 6.20—6.16 (m, 2 H, cis -8-CH=C \underline{H}_2 and C(3)=C \underline{H}); 4.34—4.28 (two overlap. t, 4 H, 2 C \underline{H}_2 CH ₂ CO ₂ CH ₃), 4.22—4.12 (two overlap. q, 4 H, P(O)(OC \underline{H}_2 CH ₃) ₂); 3.65, 3.65, 3.64, 3.57, 3.55, 3.52 (all s, 18 H, 2 CH ₂ CH ₂ CO ₂ C \underline{H}_3 and 4 C \underline{H}_3); 3.23—3.19 (two overlap. t, 4 H, 2 CH ₂ C \underline{H}_2 CO ₂ CH ₃); 2.80 (br.s, 1 H, N \underline{H}); 1.28 (t, 6 H, P(O)(OCH ₂ C \underline{H}_3) ₂); 1.24, 1.23 (both s, 9 H each, C(C \underline{H}_3) ₃); -4.21 (br.s, 2 H, 2 NH)
2d	19.5	10.26, 9.99, 9.88, 9.85 (all s, 4 H, $meso-H$); 8.24 (dd, 1 H, 3-C \underline{H} =CH ₂ , J_{trans} = 17.7, J_{cis} = 11.8); 6.35 (d, 1 H, $trans$ -3-CH=C \underline{H}_2 , J_{gem} = 0.5); 6.20—6.16 (m, 2 H, cis -3-CH=C \underline{H}_2 and C(3)CH=CH ₂), 4.34—4.28 (two overlap. t, 4 H, 2 C \underline{H}_2 CH ₂ CO ₂ CH ₃); 4.20—4.12 (two overlap. q, 4 H, P(O)(OC \underline{H}_2 CH ₂) ₂); 3.65, 3.65, 3.64, 3.57, 3.55, 3.52 (all s, 18 H each, 2 CH ₂ CH ₂ CO ₂ C \underline{H}_3) and 4 C \underline{H}_3); 3.26—3.21 (two overlap. t, 4 H, 2 CH ₂ C \underline{H}_2 CO ₂ CH ₃); 2.89 (br.s, 1 H, N \underline{H}); 1.29 (t, 6 H, P(O)(OCH ₂ C \underline{H}_3) ₂); 1.25, 1.24 (both s, 9 H each, C(C \underline{H}_3) ₃); -4.24 (br.s, 2 H, 2 NH)
2e	21.2	10.30, 9.96, 9.85 (all s, 3 H each, <i>meso</i> -H); 8.27—8.20 (m, 2 H, 8-C \underline{H}_2 -CH ₃); 6.30—6.29 (t, 1 H, 8-CH ₂ -C \underline{H}_3 , $J = 0.5$); 6.26 (m, 2 H, 8-CH ₂ -C \underline{H}_3 and C(8)C \underline{H} HMe); 4.34 (t, 2 H, C \underline{H}_2 CH ₂ CO ₂ CH ₃); 4.20—4.12 (two overlap. q, 4 H, P(O)(OC \underline{H}_2 CH ₃) ₂); 3.60, 3.59, 3.57, 3.55, 3.52 (all s, 21 H each, 3 CH ₂ CO ₂ C \underline{H}_3 and 4 C \underline{H}_3); 3.24 (s, 2 H, C \underline{H}_2 CO ₂ CH ₃); 2.77 (br.s, 1 H, N \underline{H}); 1.31 (t, 6 H, P(O)(OCH ₂ C \underline{H}_3) ₂); 1.24, 1.21 (both s, 9 H each, C(C \underline{H}_3) ₃); -4.20 (br.s, 2 H, 2 NH)
2f	25.8	10.20, 10.05, 9.80, 9.79 (all s, 4 H each, $meso$ -H); 4.34—4.28 (two overlap. t, 4 H, 2 C \underline{H}_2 CC \underline{H}_2 CC \underline{H}_3); 4.25—4.19 (two overlap. q, 4 H, P(O)(OC \underline{H}_2 CH $_3$) \underline{H}_2); 3.69, 3.67, 3.64, 3.55, 3.53, 3.50 (all s, 18 H each, 2 C \underline{H}_2 CC \underline{H}_3); 3.28—3.25 (two overlap. t, 4 H, 2 C \underline{H}_2 CO \underline{H}_3); 2.40 (br.s, 1 H, N \underline{H}); 1.32 (t, 6 H, P(O)(OC \underline{H}_2 C \underline{H}_3) \underline{H}_3); 1.21, 1.19 (both s, 9 H each, C(C \underline{H}_3) \underline{H}_3), -4.13 (br.s, 2 H, 2 NH)

(acetone—dichloromethane, 1:20, as the eluent). After evaporation of the solvent, compound **2a** was obtained as an oil, which was dissolved in methanol and precipitated with hexane. The yield was 37 mg (95%), m.p. 204 °C (decomp.).

3-(2-tert-Butylamino-2-diethoxyphosphoryl)ethylidene-2-hydroxy-8,12-bis(2-methoxycarbonylethyl)-2,7,3,17-tetra-methyl-18-vinylporphyrin (2b) was prepared analogously from porphyrin 1b (30 mg, 0.048 mmol), diethyl phosphite (21 mg, 0.15 mol), and tert-butylamine (30 mg, 0.05 mmol); the reaction time was 2 min. The yield was 36 mg (93%), m.p. 202 °C (decomp.).

3-[(*tert*-Butylamino)diethoxyphosphoryl]methyl-13,17-bis(2-methoxycarbonylethyl)-2,7,12,18-tetramethyl-8-vinylporphyrin (2c) was prepared analogously from porphyrin 1c (50 mg, 0.09 mmol), diethyl phosphite (37 mg, 0.27 mmol), and *tert*-butylamine (60 mg, 0.09 mmol); the reaction time was 7 min. The yield was 60 mg (89%), m.p. 212 °C (decomp.).

3-(*tert*-Butylaminodiethoxyphosphoryl)methyl-8,12-bis(2-methoxycarbonylethyl)-2,7,13,17-tetramethyl-18-vinylporphyrin

(2d) was prepared analogously from porphyrin **1d** (50 mg, 0.09 mmol), diethyl phosphite (37 mg, 0.27 mmol), and *tert*-butylamine (60 mg, 0.09 mmol); the reaction time was 7 min. The yield was 61 mg (90%), m.p. 212 °C (decomp.).

3-[(tert-Butylamino)diethoxyphosphoryl]methyl-8-ethyl-13-methoxycarbonyl-17-(2-methoxycarbonylethyl)-15-methoxycarbonylmethyl-2,7,12,18-tetramethylporphyrin (2e) was prepared analogously from porphyrin 1e (58 mg, 0.09 mmol), diethyl phosphite (37 mg, 0.27 mmol), and tert-butylamine (60 mg, 0.09 mmol); the reaction time was 8 min. The yield was 65 mg (87%), m.p. 215 °C (decomp.). Found (%): C, 63.32; H, 7.31; N, 8.44. $C_{44}H_{60}N_5O_9P$. Calculated (%): C, 63.37; H, 7.25; N, 8.40.

3,8-Bis(1-tert-butylamino-1-diethoxyphosphoryl)ethyl-13,17-bis(2-methoxycarbonylethyl)-2,7,12,18-tetramethyl-porphyrin (2f) was prepared analogously to compound 2a from porphyrin 1f (56 mg, 0.09 mmol), diethyl phosphite (37 mg, 0.27 mmol), and tert-butylamine (60 mg, 0.09 mmol); the reaction time was 4 min. The yield was 67 mg (91%), m.p. 194 °C

(decomp.). Found (%): C, 61.89; H, 7.82; N, 8.29. $C_{44}H_{60}N_5O_9P$. Calculated (%): C, 61.89; H, 7.79; N, 8.33.

For compounds **2a-d**, which were prepared by the Kabachnik—Fields reaction, the spectroscopic characteristics are identical to those reported earlier. 9

This study was financially supported by the Russian Foundation for Basic Research (Project No. 04-03-32710) and the Foundation of the President of the Russian Federation (Program for the Support of Leading Scientific Schools, Grant NSh-1611.2003.03)

References

- 1. E. D. Sternberg, D. Dolphin, and C. Brückner, *Tetrahedron*, 1998, **54**, 4151.
- 2. H. Ali and J. E. van Lier, Chem. Rev., 1999, 99, 2379.
- 3. T. D. Mody, J. Porph. Phth., 2000, 4, 362.
- 4. R. K. Pandey, J. Porph. Phth., 2000, 4, 368.

- 5. J. Uziel and J. P. Genet, Zh. Org. Khim., 1997, 33, 1605.
- P. Kafarski and B. Lejczak, *Phosphorus, Sulfur and Silicon*, 1991, 63, 193.
- 7. P. P. Giannousis and P. A. Bartlett, *J. Med. Chem.*, 1987, **30**, 1603.
- M. M. Kabachnic, E. V. Zobnina, and I. P. Beletskaya, Zh. Org. Khim., 2005, 41, No. 4 [Russ. J. Org. Chem., 2005, No. 4 (Engl. Transl.)].
- 9. V. Ya. Pavlov, M. M. Kabachnic, E. V. Zobnina, G. V. Ponomarev, and I. P. Beletskaya, *Synlett.*, 2003, **14**, 2193.
- H. H. Inhoffen, H. Brockmann, Jr., and C. Bliesener, *Ann. Chem.*, 1969, 730, 173.
- R. K. Pandey, M. Isaac, I. MacDonald, C. J. Medforth, M. O. Senge, and K. M. Smith, *J. Org. Chem.*, 1997, 62, 1463.
- 12. H. Brunner, and K.-M. Schellerer, and B. Treittinger, *Inorg. Chim. Acta*, 1997, **264**, 67.

Received October 25, 2004; in revised form January 19, 2005